LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

DEGREE EXAMINATION – **COMPUTER APPLICATIONS & C OMP. SCI.**

SECOND SEMESTER – APRIL 2015

MT 2101 - MATHEMATICS FOR COMPUTER APPLICATIONS MT 2100 - MATHEMATICS FOR COMPUTER SCIENCE

	ate : Dept. No.	Max. : 100 Marks						
	Part A							
Answer ALL questions: (10X2 =20)								
1	. Find the eigen values of the matrix $A = \begin{bmatrix} 6 & 10 \\ 14 & 25 \end{bmatrix}$.							
	2. Write down the expansion of $\cos 3\theta$ in terms of $\cos \theta$.							
3	3. Solve the equation $x^3 + 6x + 20 = 0$, one of the roots being 1+3i.							
	4. Write the formula for radius of curvature in Cartesian form.							
	5. Evaluate $\int (2x+1)^3 dx$.							
6	5. Evaluate $\int_{0}^{2} y^{2} dy$							
7	7. Find complementary function for $(D^2 + 4D + 4) y = 0$.							
8	8. Solve $pq = 1$.							
	9. Write the formula for Regula-Falsi method to find the real roots of the equation $f(x) = 0$.							
1	10. Write the formula for Simpson's 3/8 th rule.							
	Part B							
Ansv	wer any FIVE questions:	(5 x8 = 40)						
1	1. Find the eigen values of $A = \begin{bmatrix} 2 & 2 & 0 \\ 2 & 1 & 1 \\ -7 & 2 & -3 \end{bmatrix}$.							
1	12. Show that $\frac{\cos 7\theta}{\cos \theta} = 64\cos^6 \theta - 112\cos^4 \theta + 56\cos^2 \theta - 7.$							
1	3. If $u = \sin^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \tan u$.							
1	14. What is the radius of curvature for the curve $\sqrt{x} + \sqrt{y} = 1$ at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$.							

15. Evaluate $\int \frac{dx}{2x^2 + 3x - 5}$. 16. Evaluate $\int x^3 e^{2x} dx$. 17. Solve $p^2 + q^2 = npq$.

18. Find the first derivative of f(x) at x = 1.5 using Newton's forward - interpolation formula.

x	1.5	2.0	2.5	3.0	3.5	4.0
f(x)	3.375	7.000	13.625	24.000	38.875	59.000

Part C

Answer any TWO questions:

19. Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{bmatrix}$ and hence find its inverse. (20)

- 20. a) Evaluate: $\int \frac{3x+4}{(x-7)(2x+3)} dx.$ b) Evaluate: $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dy dx.$ (10+10) 21. (a) Solve $6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0.$
 - (b) Solve the equation $(D^2 2D + 2)y = e^x x^2$.

22. (a) Evaluate ∫₀¹⁰ 1/(1+x²) dx using trapezoidal rule with h = 1.
(b) Find by Newton - Raphson method, the real root of x³ - 3x - 5 = 0, correct to three decimal places, where the root lies between 2 and 3. (10+10)

$(2 \times 20 = 40)$

(10+10)